(New page: the variance of a binomial random variable: *var(X) = E[X^2] - (E[X])^2 * = E[X(X-1)] + E[X] - (E[X])^2 * = n*(n-1)*P^2 + n*p - (n*p)^2 * = n*p - n*p^2 *now, set n = 100...)
 
Line 1: Line 1:
 
the variance of a binomial random variable:
 
the variance of a binomial random variable:
*var(X) = E[X^2] - (E[X])^2
+
var(X) = E[X^2] - (E[X])^2
*      = E[X(X-1)] + E[X] - (E[X])^2
+
      = E[X(X-1)] + E[X] - (E[X])^2
*      = n*(n-1)*P^2 + n*p - (n*p)^2
+
      = n*(n-1)*P^2 + n*p - (n*p)^2
*      = n*p - n*p^2
+
      = n*p - n*p^2
  
*now, set n = 1000, take derivative with respect to p, set equal to zero, solve for p, and plug into var(x) equation to solve for the maximum value.
+
now, set n = 1000, take derivative with respect to p, set equal to zero, solve for p, and plug into var(x) equation to solve for the maximum value.
  
*i end up getting p = .5 so max var(X) = 250 (when X is a binomial random variable with parameter 1000)
+
 
 +
i end up getting p = .5 so max var(X) = 250 (when X is a binomial random variable with parameter 1000)

Revision as of 05:55, 3 November 2008

the variance of a binomial random variable: var(X) = E[X^2] - (E[X])^2

      = E[X(X-1)] + E[X] - (E[X])^2
      = n*(n-1)*P^2 + n*p - (n*p)^2
      = n*p - n*p^2

now, set n = 1000, take derivative with respect to p, set equal to zero, solve for p, and plug into var(x) equation to solve for the maximum value.


i end up getting p = .5 so max var(X) = 250 (when X is a binomial random variable with parameter 1000)

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch