Line 6: Line 6:
 
The rectangle would have four transformations:
 
The rectangle would have four transformations:
  
Rotation of 0º (or 360º) : <math>R_{180}</math>
+
Rotation of 0º (or 360º) : <math>R_{0}</math>
  
 
[[Image:R0_MA453Fall2008walther.png]]
 
[[Image:R0_MA453Fall2008walther.png]]
  
  
Rotation of 180º: <math>R_{0}</math>
+
Rotation of 180º: <math>R_{180}</math>
  
 
[[Image:R180_MA453Fall2008walther.png]]
 
[[Image:R180_MA453Fall2008walther.png]]
  
  
Flip About a Horizontal Axis: H
+
Flip About a Horizontal Axis: <math>H</math>
  
 
[[Image:H_MA453Fall2008walther.png]]
 
[[Image:H_MA453Fall2008walther.png]]
  
  
Flip About a Vertical Axis: V
+
Flip About a Vertical Axis: <math>V</math>
  
 
[[Image:V_MA453Fall2008walther.png]]
 
[[Image:V_MA453Fall2008walther.png]]
  
 
From this, the Cayley table can easily be constructed.
 
From this, the Cayley table can easily be constructed.

Revision as of 17:32, 7 September 2008

If you name the verticies of the four rectangles A, B, C, and D.

The rectangle would appear thus: R0 MA453Fall2008walther.png

The rectangle would have four transformations:

Rotation of 0º (or 360º) : $ R_{0} $

R0 MA453Fall2008walther.png


Rotation of 180º: $ R_{180} $

R180 MA453Fall2008walther.png


Flip About a Horizontal Axis: $ H $

H MA453Fall2008walther.png


Flip About a Vertical Axis: $ V $

V MA453Fall2008walther.png

From this, the Cayley table can easily be constructed.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood