Line 1: Line 1:
Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval <i>I</i> containing a.  Suppose also that g'(x)/=0 on <i>I</i> if x/=a.  Then
+
Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval <i>I</i> containing a.  Suppose also that g'(x)/=0 on <i>I</i> if x/=a.  Then <br>
 
<math>
 
<math>
 
\lim_{x \to\ a}\frac{f(x)}{g(x)}= \lim_{x \to\ a}\frac{f'(x)}{g'(x)}
 
\lim_{x \to\ a}\frac{f(x)}{g(x)}= \lim_{x \to\ a}\frac{f'(x)}{g'(x)}

Revision as of 11:41, 4 September 2008

Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval I containing a. Suppose also that g'(x)/=0 on I if x/=a. Then
$ \lim_{x \to\ a}\frac{f(x)}{g(x)}= \lim_{x \to\ a}\frac{f'(x)}{g'(x)} $, if the limis on the right exists (or is positive or negative infinity).

This is Elizabeth's favorite theorem.

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach