Line 3: Line 3:
 
\displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)}
 
\displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)}
 
</math>,
 
</math>,
if the limis on the right exists (or is <math>infty</math>).
+
if the limis on the right exists (or is positive or negative infinity).
  
 
This is Elizabeth's favorite theorem.
 
This is Elizabeth's favorite theorem.

Revision as of 09:16, 4 September 2008

Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval I containing a. Suppose also that g'(x)/=0 on I if x/=a. Then $ \displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)} $, if the limis on the right exists (or is positive or negative infinity).

This is Elizabeth's favorite theorem.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett