Line 4: | Line 4: | ||
It's a tricky one to prove, unless you are one endowed with a certain amount of intuition (exempli gratia, Uli, et alii). Simple trigonometry and the ever overlooked Pigeonhole Principle are key tools to solving it. | It's a tricky one to prove, unless you are one endowed with a certain amount of intuition (exempli gratia, Uli, et alii). Simple trigonometry and the ever overlooked Pigeonhole Principle are key tools to solving it. | ||
+ | |||
+ | As a side note, [http://digg.com/general_sciences/The_list_of_the_100_greatest_theorems digg this]. |
Latest revision as of 11:57, 31 August 2008
Choose 13 real numbers $ x_1,x_2,\ldots,x_{13}\in\mathbb{R} $ with $ x_i\neq x_j $ if $ i\neq j $. For these 13 numbers there exist at least two numbers amongst them such that
$ 0 < \frac{x_i-x_j}{1+x_ix_j} \leq 2-\sqrt{3} $
It's a tricky one to prove, unless you are one endowed with a certain amount of intuition (exempli gratia, Uli, et alii). Simple trigonometry and the ever overlooked Pigeonhole Principle are key tools to solving it.
As a side note, digg this.