(9 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
Let G = (V,E) be an undirected graph with ''e'' edges. Then
 
Let G = (V,E) be an undirected graph with ''e'' edges. Then
  
2''e'' = <math>\sum_{\forall v\in V \ {deg(v)}}</math>
+
2''e'' = <math>\sum_{\forall v\in V \ }{deg(v)}</math>

Latest revision as of 11:52, 31 August 2008

I do not really have a favorite theorem but one that I like and can remember is The Handshake Theorem from discrete. I liked it because I understood it and it was a very useful theorem to use in the class. No one else has the same favorite theorem.

The Handshake Theorem states: Let G = (V,E) be an undirected graph with e edges. Then

2e = $ \sum_{\forall v\in V \ }{deg(v)} $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach