(New page: {{:ExamReviewNav}} =Chapter 8=) |
(→Chapter 8) |
||
Line 1: | Line 1: | ||
{{:ExamReviewNav}} | {{:ExamReviewNav}} | ||
=Chapter 8= | =Chapter 8= | ||
+ | #'''Complex Exponential and Sinusoidal Amplitude Modulation''' (You Can Hear the Music on the Amplitude Modulation Radio -''Everclear'') Systems with the general form <math> y(t) = x(t)c(t) </math> where <math>c(t)</math> is the ''carrier signal'' and <math>x(t)</math> is the ''modulating signal''. The ''carrier signal'' has its amplitude multiplied (modulated) by the information-bearing ''modulating signal''. | ||
+ | ##Complex exponential ''carrier signal'': <math>c(t) = e^{\omega_c t + \theta_c}</math> | ||
+ | ##Sinusoidal ''carrier signal'': <math>c(t) = cos(\omega_c t + \theta_c )</math> | ||
+ | #'''Recovering the Information Signal''' <math>x(t)</math> '''Through Demodulation''' | ||
+ | ##Synchronous | ||
+ | ##Asynchronous | ||
+ | #'''Frequency-Division Multiplexing''' (Use the Entire Width of that Frequency Band!) | ||
+ | #'''Single-Sideband Sinusoidal Amplitude Modulation''' (Save the Bandwidth, Save the World!) | ||
+ | #'''AM with a Pulse-Train Carrier''' Digital Airwaves | ||
+ | ##<math>c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t}</math> | ||
+ | ##Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -''Benjamin Franklin'') | ||
+ | Recommended Exercises: | ||
+ | 8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23 |
Latest revision as of 06:10, 8 December 2008
Chapter 8
- Complex Exponential and Sinusoidal Amplitude Modulation (You Can Hear the Music on the Amplitude Modulation Radio -Everclear) Systems with the general form $ y(t) = x(t)c(t) $ where $ c(t) $ is the carrier signal and $ x(t) $ is the modulating signal. The carrier signal has its amplitude multiplied (modulated) by the information-bearing modulating signal.
- Complex exponential carrier signal: $ c(t) = e^{\omega_c t + \theta_c} $
- Sinusoidal carrier signal: $ c(t) = cos(\omega_c t + \theta_c ) $
- Recovering the Information Signal $ x(t) $ Through Demodulation
- Synchronous
- Asynchronous
- Frequency-Division Multiplexing (Use the Entire Width of that Frequency Band!)
- Single-Sideband Sinusoidal Amplitude Modulation (Save the Bandwidth, Save the World!)
- AM with a Pulse-Train Carrier Digital Airwaves
- $ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t} $
- Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -Benjamin Franklin)
Recommended Exercises: 8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23