(New page: {{:ExamReviewNav}} =Chapter 8=)
 
(Chapter 8)
 
Line 1: Line 1:
 
{{:ExamReviewNav}}
 
{{:ExamReviewNav}}
 
=Chapter 8=
 
=Chapter 8=
 +
#'''Complex Exponential and Sinusoidal Amplitude Modulation''' (You Can Hear the Music on the Amplitude Modulation Radio -''Everclear'') Systems with the general form <math> y(t) = x(t)c(t) </math> where <math>c(t)</math> is the ''carrier signal'' and <math>x(t)</math> is the ''modulating signal''. The ''carrier signal'' has its amplitude multiplied (modulated) by the information-bearing ''modulating signal''.
 +
##Complex exponential ''carrier signal'': <math>c(t) = e^{\omega_c t + \theta_c}</math>
 +
##Sinusoidal ''carrier signal'': <math>c(t) = cos(\omega_c t + \theta_c )</math>
 +
#'''Recovering the Information Signal''' <math>x(t)</math> '''Through Demodulation'''
 +
##Synchronous
 +
##Asynchronous
 +
#'''Frequency-Division Multiplexing''' (Use the Entire Width of that Frequency Band!)
 +
#'''Single-Sideband Sinusoidal Amplitude Modulation''' (Save the Bandwidth, Save the World!)
 +
#'''AM with a Pulse-Train Carrier''' Digital Airwaves
 +
##<math>c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t}</math>
 +
##Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -''Benjamin Franklin'')
 +
Recommended Exercises:
 +
8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23

Latest revision as of 06:10, 8 December 2008

ExamReviewNav

Chapter 8

  1. Complex Exponential and Sinusoidal Amplitude Modulation (You Can Hear the Music on the Amplitude Modulation Radio -Everclear) Systems with the general form $ y(t) = x(t)c(t) $ where $ c(t) $ is the carrier signal and $ x(t) $ is the modulating signal. The carrier signal has its amplitude multiplied (modulated) by the information-bearing modulating signal.
    1. Complex exponential carrier signal: $ c(t) = e^{\omega_c t + \theta_c} $
    2. Sinusoidal carrier signal: $ c(t) = cos(\omega_c t + \theta_c ) $
  2. Recovering the Information Signal $ x(t) $ Through Demodulation
    1. Synchronous
    2. Asynchronous
  3. Frequency-Division Multiplexing (Use the Entire Width of that Frequency Band!)
  4. Single-Sideband Sinusoidal Amplitude Modulation (Save the Bandwidth, Save the World!)
  5. AM with a Pulse-Train Carrier Digital Airwaves
    1. $ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t} $
    2. Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -Benjamin Franklin)

Recommended Exercises: 8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett