(Chapter 8)
(Chapter 8)
Line 17: Line 17:
  
 
==Chapter 8==
 
==Chapter 8==
#Complex Exponential and Sinusoidal Amplitude Modulation (AM) <math> y(t) = x(t)c(t) </math>
+
#'''Complex Exponential and Sinusoidal Amplitude Modulation''' (You Can Hear the Music on the Amplitude Modulation Radio -''Everclear'') Systems with the general form <math> y(t) = x(t)c(t) </math> where <math>c(t)</math> is the ''carrier signal'' and <math>x(t)</math> is the ''modulating signal''. The ''carrier signal'' has its amplitude multiplied (modulated) by the information-bearing ''modulating signal''.
##<math>c(t) = e^{\omega_c t + \theta_c}</math>
+
##Complex exponential ''carrier signal'': <math>c(t) = e^{\omega_c t + \theta_c}</math>  
##<math>c(t) = cos(\omega_c t + \theta_c )</math>
+
##Sinusoidal ''carrier signal'': <math>c(t) = cos(\omega_c t + \theta_c )</math>
#Recovering the Information Signal <math>x(t)</math> Through Demodulation
+
#'''Recovering the Information Signal''' <math>x(t)</math> '''Through Demodulation'''
 
##Synchronous
 
##Synchronous
 
##Asynchronous
 
##Asynchronous
#Frequency-Division Multiplexing
+
#'''Frequency-Division Multiplexing''' (Use the Entire Width of that Frequency Band!)
#Single-Sideband Sinusoidal Amplitude Modulation
+
#'''Single-Sideband Sinusoidal Amplitude Modulation''' (Save the Bandwidth, Save the World!)
#AM with A Pulse-Train Carrier
+
#'''AM with a Pulse-Train Carrier''' Digital Airwaves
:<math>c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin()k\omega_c \Delta /2}{\pi k}e^{jk\omega_c t}</math>
+
##<math>c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t}</math>
 +
##Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -''Benjamin Franklin'')
 +
Recommended Exercises:
 
8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23
 
8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23
  

Revision as of 02:05, 5 December 2008

Suggested problems from Oppenheim and Willsky

Chapter 7

  1. Sampling
    1. Impulse Train Sampling
    2. The Sampling Theorem and the Nyquist
  2. Signal Reconstruction Using Interpolation: the fitting of a continuous signal to a set of sample values
    1. Sampling with a Zero-Order Hold (Horizontal Plateaus)
    2. Linear Interpolation (Connect the Samples)
  3. Undersampling: Aliasing
  4. Processing CT Signals Using DT Systems (Vinyl to CD)
    1. Analog vs. Digital: The Show-down (A to D conversion -> Discrete-Time Processing System -> D to A conversion
  5. Sampling DT Signals (CD to MP3 albeit a complicated sampling algorithm, MP3 is less dense signal)

7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 7.10, 7.22, 7.29, 7.31, 7.33

Chapter 8

  1. Complex Exponential and Sinusoidal Amplitude Modulation (You Can Hear the Music on the Amplitude Modulation Radio -Everclear) Systems with the general form $ y(t) = x(t)c(t) $ where $ c(t) $ is the carrier signal and $ x(t) $ is the modulating signal. The carrier signal has its amplitude multiplied (modulated) by the information-bearing modulating signal.
    1. Complex exponential carrier signal: $ c(t) = e^{\omega_c t + \theta_c} $
    2. Sinusoidal carrier signal: $ c(t) = cos(\omega_c t + \theta_c ) $
  2. Recovering the Information Signal $ x(t) $ Through Demodulation
    1. Synchronous
    2. Asynchronous
  3. Frequency-Division Multiplexing (Use the Entire Width of that Frequency Band!)
  4. Single-Sideband Sinusoidal Amplitude Modulation (Save the Bandwidth, Save the World!)
  5. AM with a Pulse-Train Carrier Digital Airwaves
    1. $ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t} $
    2. Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -Benjamin Franklin)

Recommended Exercises: 8.1, 8.2, 8.3, 8.5, 8.8, 8.10, 8.11, 8.12, 8.21, 8.23

Chapter 9

9.2, 9.3, 9.4, 9.6, 9.8, 9.9, 9.21, 9.22

Chapter 10

10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11, 10.13, 10.15, 10.21, 10.22, 10.23, 10.24, 10.25, 10.26, 10.27, 10.30, 10.31, 10.32, 10.33, 10.43, 10.44.

Note: If a problem states that you should use “long division”, feel free to use the geometric series formula instead.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett