(definition)
Line 13: Line 13:
  
 
:<math>s = \sigma + i \omega \, </math>
 
:<math>s = \sigma + i \omega \, </math>
 +
 +
== inverse laplace transform ==

Revision as of 15:21, 24 November 2008

definition

The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the function F(s), defined by:

$ F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{0^-}^{\infty} e^{-st} f(t) \,dt. $

The lower limit of 0 is short notation to mean

$ \lim_{\varepsilon\to 0+}\int_{-\varepsilon}^\infty $

and assures the inclusion of the entire Dirac delta function δ(t) at 0 if there is such an impulse in f(t) at 0.

The parameter s is in general complex number:

$ s = \sigma + i \omega \, $

inverse laplace transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett