(definition)
(definition)
Line 1: Line 1:
 
== definition ==
 
== definition ==
The Laplace transform of a [[function (mathematics)_ECE301Fall2008mboutin|function]] ''f''(''t''), defined for all [[real number_ECE301Fall2008mboutin]]s ''t'' ≥ 0, is the function ''F''(''s''), defined by:
+
The Laplace transform of a function ''f''(''t''), defined for all real numbers ''t'' ≥ 0, is the function ''F''(''s''), defined by:
  
 
:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{0^-}^{\infty} e^{-st} f(t) \,dt. </math>
 
:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{0^-}^{\infty} e^{-st} f(t) \,dt. </math>
Line 8: Line 8:
 
:<math>\lim_{\varepsilon\to 0+}\int_{-\varepsilon}^\infty </math>
 
:<math>\lim_{\varepsilon\to 0+}\int_{-\varepsilon}^\infty </math>
  
and assures the inclusion of the entire [[Dirac delta_ECE301Fall2008mboutin]] function δ(''t'') at 0 if there is such an impulse in ''f''(''t'') at 0.
+
and assures the inclusion of the entire Dirac delta function δ(''t'') at 0 if there is such an impulse in ''f''(''t'') at 0.
  
The parameter ''s'' is in general [[complex number_ECE301Fall2008mboutin|complex]]:
+
The parameter ''s'' is in general complex number:
  
 
:<math>s = \sigma + i \omega \, </math>
 
:<math>s = \sigma + i \omega \, </math>

Revision as of 15:19, 24 November 2008

definition

The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the function F(s), defined by:

$ F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{0^-}^{\infty} e^{-st} f(t) \,dt. $

The lower limit of 0 is short notation to mean

$ \lim_{\varepsilon\to 0+}\int_{-\varepsilon}^\infty $

and assures the inclusion of the entire Dirac delta function δ(t) at 0 if there is such an impulse in f(t) at 0.

The parameter s is in general complex number:

$ s = \sigma + i \omega \, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett