(New page: == definition ==)
 
(definition)
Line 1: Line 1:
 
== definition ==
 
== definition ==
 +
The Laplace transform of a [[function (mathematics)_ECE301Fall2008mboutin|function]] ''f''(''t''), defined for all [[real number_ECE301Fall2008mboutin]]s ''t'' ≥ 0, is the function ''F''(''s''), defined by:
 +
 +
:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{0^-}^{\infty} e^{-st} f(t) \,dt. </math>
 +
 +
The lower limit of 0<sup>&minus;</sup> is short notation to mean
 +
 +
:<math>\lim_{\varepsilon\to 0+}\int_{-\varepsilon}^\infty </math>
 +
 +
and assures the inclusion of the entire [[Dirac delta_ECE301Fall2008mboutin]] function δ(''t'') at 0 if there is such an impulse in ''f''(''t'') at 0.
 +
 +
The parameter ''s'' is in general [[complex number_ECE301Fall2008mboutin|complex]]:
 +
 +
:<math>s = \sigma + i \omega \, </math>

Revision as of 15:18, 24 November 2008

definition

The Laplace transform of a function f(t), defined for all real number_ECE301Fall2008mboutins t ≥ 0, is the function F(s), defined by:

$ F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{0^-}^{\infty} e^{-st} f(t) \,dt. $

The lower limit of 0 is short notation to mean

$ \lim_{\varepsilon\to 0+}\int_{-\varepsilon}^\infty $

and assures the inclusion of the entire Dirac delta_ECE301Fall2008mboutin function δ(t) at 0 if there is such an impulse in f(t) at 0.

The parameter s is in general complex:

$ s = \sigma + i \omega \, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett