(Theorem of Total Probability for Continuous Random Variables)
(Theorem of Total Probability for Continuous Random Variables)
Line 34: Line 34:
  
 
==Theorem of Total Probability for Continuous Random Variables==
 
==Theorem of Total Probability for Continuous Random Variables==
*<math>f_Y(y) = f_{Y|A}(y)*P(A) + f_{Y|B}(y)*P(B)</math>
+
*<math>f_Y(y) = f_{Y|A}(y)P(A) + f_{Y|B}(y)P(B)</math>
 +
*<math>f_X(x) = \int^\infty_{-\infty}f_{XY}(x,y)dy = \int^\infty_{-\infty}f_{X|Y}(x|y)f_Y(y)dy </math>
  
 
==Conditioning a Random variable on an Event==
 
==Conditioning a Random variable on an Event==

Revision as of 10:43, 22 October 2008

Cumulative Density Function (CDF)

  • $ F_X(x) = P[X \leq x] = \int_{-\infty}^{\infty} f_x(t)dt $
  • $ 1 - F_X(x) = P[X > x] $

$ \lim_{x\rightarrow-\infty}f_X(x) = 0 $

$ \lim_{x\rightarrow\infty}f_X(x) = 1 $

Exponential RV

PDF: fX(x) = $ \lambda*e^{-\lambda*x} $, x >= 0 ; fX(x) = 0 , else

CDF: FX(x) = $ 1-e^{-\lambda*x} $

  • E[X] = 1/$ \lambda $ , var(X) = 1/($ \lambda)^2 $

Gaussian RV

  • The sum of many, small independent things
  • Parameters:

$ E[X]=\mu $ $ Var[X]=\sigma^2 $

$ f_X(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} $


PDF Properties

  • $ f_X(x)\geq 0 $ for all x
  • $ \int\limits_{-\infty}^{\infty}f_X(x)dx = 1 $
  • If $ \delta $ is very small, then
 $  P([x,x+\delta]) \approx f_X(x)\cdot\delta $
  • For any subset B of the real line,
 $  P(X\in B) = \int\limits_Bf_X(x)dx  $

Theorem of Total Probability for Continuous Random Variables

  • $ f_Y(y) = f_{Y|A}(y)P(A) + f_{Y|B}(y)P(B) $
  • $ f_X(x) = \int^\infty_{-\infty}f_{XY}(x,y)dy = \int^\infty_{-\infty}f_{X|Y}(x|y)f_Y(y)dy $

Conditioning a Random variable on an Event

Conditioning a Random variable on another Random variable

Shifting and Scaling of Random Variables

Finding PDFs and CDFs of functions of Random Variables

Other Useful Things

  • $ E[X] = \int^\infty_{-\infty}x*f_X(x)dx $
  • $ Var(X) = E[X^2] - (E[X])^2 $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett