(One intermediate revision by the same user not shown)
Line 19: Line 19:
 
<math>      = -\int_{-\infty}^{0}e^{-qt}e^{-st}dt</math>
 
<math>      = -\int_{-\infty}^{0}e^{-qt}e^{-st}dt</math>
  
<math>      = -\int_{-\infty}^{0}e^{-(q+s}t}dt</math>
+
<math>      = -\int_{-\infty}^{0}e^{-(q+s)t}dt</math>
  
<math>      = -\int_{-\infty}^{0}e^{-(q+a+jw}t}dt</math>
+
<math>      = -\int_{-\infty}^{0}e^{-(q+a+jw)t}dt</math>
  
<math>      = -\int_{-\infty}^{0}e^{-(q+a}t}e^{-jwt}dt</math>
+
<math>      = -\int_{-\infty}^{0}e^{-(q+a)t}e^{-jwt}dt</math>
  
 
if <math> q+a \geq 0, </math> integral diverges
 
if <math> q+a \geq 0, </math> integral diverges
  
if <math> q+a \l 0, X(s) = \frac{1}{q+a} </math>
+
if <math> q+a < 0, X(s) = \frac{1}{q+a} </math>
  
 
Then we can figure out where the laplace transform converges.
 
Then we can figure out where the laplace transform converges.
  
In the example, the lapace transform only converges when <math> q+a \l 0 </math>
+
In the example, the lapace transform only converges when <math> q+a < 0 </math>
  
 
That region is called Region of converge, ROC.
 
That region is called Region of converge, ROC.

Latest revision as of 08:15, 23 November 2008

Laplace Transform

The laplace transform of a general signal $ x(t) $ is defined as

$ X(s) = \int_{-\infty}^{\infty}x(t)e^{-st}dt $

The complex variable s can be written as $ s = \sigma + jw $

S means complex plane. So the laplace transform $ X(s) $ is on complex plane.

However, the Fourier Transform $ X(jw) $ is on pure imaginary axis.

Here is an example.

$ x(t) = -e^{-qt}u(-t) $

$ X(s) = -\int_{-\infty}^{\infty}e^{-qt}u(-t)e^{-st}dt $

$ = -\int_{-\infty}^{0}e^{-qt}e^{-st}dt $

$ = -\int_{-\infty}^{0}e^{-(q+s)t}dt $

$ = -\int_{-\infty}^{0}e^{-(q+a+jw)t}dt $

$ = -\int_{-\infty}^{0}e^{-(q+a)t}e^{-jwt}dt $

if $ q+a \geq 0, $ integral diverges

if $ q+a < 0, X(s) = \frac{1}{q+a} $

Then we can figure out where the laplace transform converges.

In the example, the lapace transform only converges when $ q+a < 0 $

That region is called Region of converge, ROC.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal