Line 10: Line 10:
  
 
       <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt  ,\mathit{u} (t)=1,t>0</math>
 
       <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt  ,\mathit{u} (t)=1,t>0</math>
 +
 +
      <math>X(s)= \frac{1}{s+a}</math>

Revision as of 11:26, 19 November 2008

                             == Fundamentals of Laplace Transform ==
     Let the signal be:
     $ x(t) =e^ {-at} \mathit{u} (t) $
     
     On doin a Laplace Transform
     $ X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt $
     $ X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt   ,\mathit{u} (t)=1,t>0 $
      $ X(s)= \frac{1}{s+a} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett