Line 9: Line 9:
 
       <math>X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt</math>
 
       <math>X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt</math>
  
       <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}dt  \mathit{u} (t) =1  t>0  </math>
+
       <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st},dt  \mathit{u} (t) =1  t>0  </math>

Revision as of 11:21, 19 November 2008

                             == Fundamentals of Laplace Transform ==
     Let the signal be:
     $ x(t) =e^ {-at} \mathit{u} (t) $
     
     On doin a Laplace Transform
     $ X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt $
     $ X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st},dt  \mathit{u} (t) =1  t>0   $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch