Line 8: | Line 8: | ||
<math>X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt</math> | <math>X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt</math> | ||
+ | |||
+ | <math>X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}dt \mathit{u} (t) =1,t>0 </math> |
Revision as of 11:20, 19 November 2008
== Fundamentals of Laplace Transform ==
Let the signal be:
$ x(t) =e^ {-at} \mathit{u} (t) $
On doin a Laplace Transform
$ X(s)= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt $
$ X(s)= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}dt \mathit{u} (t) =1,t>0 $