Line 9: Line 9:
  
 
CDF: F<sub>X</sub>(x) = <math>1-e^{-\lambda*x}</math>
 
CDF: F<sub>X</sub>(x) = <math>1-e^{-\lambda*x}</math>
 +
 +
* E[X] = 1/<math>\lambda</math> ,  var(X) = 1/(<math>\lambda)^2</math>
  
  

Revision as of 10:44, 21 October 2008

Cumulative Density Function (CDF)

  • FX(x) = P(X <= x) = integral(-inf to inf) fX(y) dy
  • 1 - FX(x) = P(X > x)


Exponential RV

PDF: fX(x) = $ \lambda*e^{-\lambda*x} $, x >= 0 ; fX(x) = 0 , else

CDF: FX(x) = $ 1-e^{-\lambda*x} $

  • E[X] = 1/$ \lambda $ , var(X) = 1/($ \lambda)^2 $


PDF Properties

  • $ f_X(x)\geq 0 $ for all x
  • $ \int\limits_{-\infty}^{\infty}f_X(x)dx = 1 $
  • If $ \delta $ is very small, then
 $  P([x,x+\delta]) \approx f_X(x)\cdot\delta $
  • For any subset B of the real line,
 $  P(X\in B) = \int\limits_Bf_X(x)dx  $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009