(New page: == How it works == <math>x(t)c(t)=y(t)</math> Where <math>x(t)</math> is the "information signal" and <math>c(t)</math> is the "carrier" == Two Major Carriers == === Complex Exponenti...)
 
Line 17: Line 17:
  
 
     Where <math>\omega_c</math> is the frequency and <math>\theta_c</math> is the phase
 
     Where <math>\omega_c</math> is the frequency and <math>\theta_c</math> is the phase
 +
 +
== Complex Exponential Modulation ==
 +
 +
<math>y(t) = e^{j\omega_ct}x(t)</math>
 +
 +
<math>Y(\omega)=F(e^{j\omega_ct}x(t))</math>
 +
 +
<math>Y(\omega)=\frac{1}{2\pi}F(e^{j\omega_ct})X(\omega)</math>
 +
 +
<math>Y(\omega)=\frac{1}{2\pi}(2\pi \delta(\omega-\omega_c})X(\omega)</math>
 +
 +
<math>Y(\omega)=X(\omega-\omega_c)</math>
 +
 +
What happens with this modulation is that the original signal <math>x(t)</math> and shifted in the frequency domain by <math>\omega_c</math>
 +
 +
=== Demodulation ie. How the Heck do I get back my original signal ===

Revision as of 15:34, 17 November 2008

How it works

$ x(t)c(t)=y(t) $

Where $ x(t) $ is the "information signal" and $ c(t) $ is the "carrier"


Two Major Carriers

Complex Exponential

$ c(t) = e^{j(\omega_ct+\theta_c)} $

Sinusoidal

$ c(t) = cos(\omega_ct+\theta_c) $

    Where $ \omega_c $ is the frequency and $ \theta_c $ is the phase

Complex Exponential Modulation

$ y(t) = e^{j\omega_ct}x(t) $

$ Y(\omega)=F(e^{j\omega_ct}x(t)) $

$ Y(\omega)=\frac{1}{2\pi}F(e^{j\omega_ct})X(\omega) $

$ Y(\omega)=\frac{1}{2\pi}(2\pi \delta(\omega-\omega_c})X(\omega) $

$ Y(\omega)=X(\omega-\omega_c) $

What happens with this modulation is that the original signal $ x(t) $ and shifted in the frequency domain by $ \omega_c $

Demodulation ie. How the Heck do I get back my original signal

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett