Line 1: Line 1:
 
 
== AM Demodulation ==
 
== AM Demodulation ==
  
 +
<math>r(n)= x(n)*cos^2(n \theta)= \frac{1}{2} x(n) + \frac{1}{2}x(n)*cos(2n\theta)</math><br>
 +
 +
<math>x(t)*cos(\frac{\pi t}{4})</math> &rArr; <math>\frac{1}{2}[X(e^{j(\theta - \pi/4)})
 +
+ X(e^{j(\theta + \pi/4)}) ]</math>.<br>
  
 
[[Image:Hw9_ECE301Fall2008mboutin.JPG]]
 
[[Image:Hw9_ECE301Fall2008mboutin.JPG]]

Revision as of 11:21, 17 November 2008

AM Demodulation

$ r(n)= x(n)*cos^2(n \theta)= \frac{1}{2} x(n) + \frac{1}{2}x(n)*cos(2n\theta) $

$ x(t)*cos(\frac{\pi t}{4}) $$ \frac{1}{2}[X(e^{j(\theta - \pi/4)}) + X(e^{j(\theta + \pi/4)}) ] $.

Hw9 ECE301Fall2008mboutin.JPG

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett