(Amplitude Modulation)
(Complex expenetial)
Line 23: Line 23:
  
 
<math>\theta_c = </math> Phase of carrier
 
<math>\theta_c = </math> Phase of carrier
 +
 +
complex exponential modulation
 +
 +
<math>y(t) = e^{j\omega_c t}x(t)</math>
 +
 +
<math>y(\omega) = F(e^{j\omega_c t}x(t))</math>
 +
 +
<math>=\frac{1}{2 \pi}F(e^{j\omega_c t})X(\omega)</math>
 +
 +
<math>=\frac{1}{2\pi} 2\pi \delta (\omega - \omega_c) * X(\omega)</math>
 +
 +
<math>=X(\omega - \omega_c)\!</math>

Revision as of 06:23, 17 November 2008

Amplitude Modulation

Def:Amplitude modulation (AM) is a method of impressing data onto an alternating-current (AC) carrier waveform.The highest frequency of the modulating data is normally less than 10 percent of the carrier frequency.

$ x(t) \longrightarrow\otimes\longrightarrow y(t)=x(t)c(t) $

       $ \uparrow  $
     c(t)

x(t) : "information bearing signal"

c(t) : "carrier"

There are two important types of carriers which are "complex exponential" and "sinusoidal"


Complex expenetial

$ c(t) = e ^{j(\omega_c t + \theta_c)} $

$ \omega_c = $ Frequency of carrier

$ \theta_c = $ Phase of carrier

complex exponential modulation

$ y(t) = e^{j\omega_c t}x(t) $

$ y(\omega) = F(e^{j\omega_c t}x(t)) $

$ =\frac{1}{2 \pi}F(e^{j\omega_c t})X(\omega) $

$ =\frac{1}{2\pi} 2\pi \delta (\omega - \omega_c) * X(\omega) $

$ =X(\omega - \omega_c)\! $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman