Line 1: Line 1:
<math>  \left\{\begin{array}{ll}1, &  \text{ if }t<T,\\ 0, & \text{else.}\end{array} \right.  \longrightarrow \frac{2 \sin \left( T \omega \right)}{\omega} </math>
+
<math>  x(t)=\left\{\begin{array}{ll}1, &  \text{ if }t<T,\\ 0, & \text{else.}\end{array} \right.  \longrightarrow {\mathcal X}(\omega)=\frac{2 \sin \left( T \omega \right)}{\omega} </math>

Revision as of 11:06, 14 November 2008

$ x(t)=\left\{\begin{array}{ll}1, & \text{ if }t<T,\\ 0, & \text{else.}\end{array} \right. \longrightarrow {\mathcal X}(\omega)=\frac{2 \sin \left( T \omega \right)}{\omega} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010