(New page: To be updated) |
(→Methods to recover a signal) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | === Methods to recover a signal === | |
+ | |||
+ | 1. Zero-order intapolation (step function) | ||
+ | |||
+ | <math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math> | ||
+ | |||
+ | [[Image:Zero_order_ECE301Fall2008mboutin.jpg|800px|center|thumb]] | ||
+ | |||
+ | 2. First-order intapolation | ||
+ | |||
+ | <math>x(t)= \sum^{\infty}_{k = -\infty} f_k (t) </math> | ||
+ | |||
+ | where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} </math> | ||
+ | |||
+ | [[Image:First_order_ECE301Fall2008mboutin.jpg|800px|left]] |
Latest revision as of 09:47, 10 November 2008
Methods to recover a signal
1. Zero-order intapolation (step function)
$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T]) $
2. First-order intapolation
$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $
where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} $