(→Methods to recover a signal) |
(→Methods to recover a signal) |
||
Line 5: | Line 5: | ||
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math> | <math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math> | ||
− | [[Image: | + | [[Image:Zero_order_ECE301Fall2008mboutin.jpg]] |
2. First-order intapolation | 2. First-order intapolation | ||
Line 13: | Line 13: | ||
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} </math> | where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} </math> | ||
− | [[Image:/ | + | [[Image:/First_order_ECE301Fall2008mboutin.jpg]] |
Revision as of 09:28, 10 November 2008
Methods to recover a signal
1. Zero-order intapolation (step function)
$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T]) $
2. First-order intapolation
$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $
where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} $