(New page: To be updated) |
|||
Line 1: | Line 1: | ||
− | + | === Methods to recover a signal === | |
+ | |||
+ | 1. Zero-order intapolation (step function) | ||
+ | |||
+ | <math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) {u(t-kT)-u[t-(k+1)T]}</math> | ||
+ | |||
+ | [[Image:Zero_order.jpg._ECE301Fall2008mboutin]] | ||
+ | |||
+ | 2. First-order intapolation | ||
+ | |||
+ | <math>x(t)= \sum^{\infty}_{k = -\infty} f_k (t) </math> | ||
+ | |||
+ | where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_k+1)-x(t_k}{t_k+1 - t_k} for t_k < t < t_k+1 </math> | ||
+ | |||
+ | [[Image:First_order.jpg._ECE301Fall2008mboutin]] |
Revision as of 09:18, 10 November 2008
Methods to recover a signal
1. Zero-order intapolation (step function)
$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) {u(t-kT)-u[t-(k+1)T]} $
File:Zero order.jpg. ECE301Fall2008mboutin
2. First-order intapolation
$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $
where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_k+1)-x(t_k}{t_k+1 - t_k} for t_k < t < t_k+1 $