m (Sampling theorem)
(Sampling theorem)
Line 30: Line 30:
 
x(t) ------> multiply ---------> <math>x_{p}(t)</math>
 
x(t) ------> multiply ---------> <math>x_{p}(t)</math>
 
         ^
 
         ^
        |
 
 
         |
 
         |
 
         |
 
         |
<math>    p(t) = \sum^{\infty}_{-\infty}\delta(t-nT)</math>
+
        |
 +
<math>    p(t) = \sum^{\infty}_{n=-\infty}\delta(t-nT)</math>
 +
 
 +
<math> x_{p}(t) = x(t)p(t) = x(t)\sum^{\infty}_{n=-\infty}\delta(t-nT)</math>
 +
          <math>= \sum^{\infty}_{n=-\infty}\x(t)delta(t-nT)</math>
 +
          <math>= \sum^{\infty}_{n=-\infty}\x(nT)delta(t-nT)</math>
 +
 
 +
Above diagram is the sampling process.

Revision as of 15:32, 9 November 2008

Sampling theorem

Here is a signal, x(t) with X(w) = 0 when |W| > Wm.


With sampling period T, samples of x(t),x(nT), can be obtained , where n = 0 +-1, +-2, ....


The sampling frequency is $ \frac{2\pi}{T} $. It is called Ws.


If Ws is greater than 2Wm, x(t) can be recovered from its samples.


Here, 2Wm is called the "Nyquist rate".


To recover, first we need a filter with amplited T when |W| < Wc.


Wc has to exist between Wm and Ws-Wm.

Here is a diagram.

x(t) ------> multiply ---------> $ x_{p}(t) $

       ^
       |
       |
       |

$ p(t) = \sum^{\infty}_{n=-\infty}\delta(t-nT) $

$ x_{p}(t) = x(t)p(t) = x(t)\sum^{\infty}_{n=-\infty}\delta(t-nT) $

         $ = \sum^{\infty}_{n=-\infty}\x(t)delta(t-nT) $
         $ = \sum^{\infty}_{n=-\infty}\x(nT)delta(t-nT) $

Above diagram is the sampling process.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang