(Sampling theorem)
m (Sampling theorem)
Line 29: Line 29:
  
 
x(t) ------> multiply ---------> <math>x_{p}(t)</math>
 
x(t) ------> multiply ---------> <math>x_{p}(t)</math>
              ↑
+
        ^
                  |
+
        |
                |
+
        |
                |
+
        |
<math>    p(t) = \sum{\infty}_{-\infty}\delta(t-nT)</math>
+
<math>    p(t) = \sum^{\infty}_{-\infty}\delta(t-nT)</math>

Revision as of 15:30, 9 November 2008

Sampling theorem

Here is a signal, x(t) with X(w) = 0 when |W| > Wm.


With sampling period T, samples of x(t),x(nT), can be obtained , where n = 0 +-1, +-2, ....


The sampling frequency is $ \frac{2\pi}{T} $. It is called Ws.


If Ws is greater than 2Wm, x(t) can be recovered from its samples.


Here, 2Wm is called the "Nyquist rate".


To recover, first we need a filter with amplited T when |W| < Wc.


Wc has to exist between Wm and Ws-Wm.

Here is a diagram.

x(t) ------> multiply ---------> $ x_{p}(t) $

       ^
        |
       |
       |

$ p(t) = \sum^{\infty}_{-\infty}\delta(t-nT) $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach