Line 1: Line 1:
 
Fourier Transform of delta functions
 
Fourier Transform of delta functions
 +
 +
1.
  
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
Line 8: Line 10:
  
 
<math> X(\omega) = 2cos(\omega) </math>
 
<math> X(\omega) = 2cos(\omega) </math>
 +
 +
2.
 +
 +
<math> x(t) = \frac{d}{dt} {u(-2-t) + u(t-2)} </math>
 +
 +
<math> x(t) = \int_{-\infty}^{infty} \frac{d}{dt} {u(-2-t) + u(t-2)} e^{-j \omega t} dt </math>

Revision as of 17:17, 24 October 2008

Fourier Transform of delta functions

1.

$ x(t) = \delta (t+1) + \delta (t-1) $

$ X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt $

$ X(\omega) = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \omega} + e^ {-j \omega})^2 $

$ X(\omega) = 2cos(\omega) $

2.

$ x(t) = \frac{d}{dt} {u(-2-t) + u(t-2)} $

$ x(t) = \int_{-\infty}^{infty} \frac{d}{dt} {u(-2-t) + u(t-2)} e^{-j \omega t} dt $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang