Line 3: Line 3:
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
  
<math> X(\omega) = \int{\infty}_{-\infty} </math>
+
<math> X(\omega) = \int_{\infty}^{-\infty} </math>

Revision as of 17:04, 24 October 2008

Fourier Transform of delta functions

$ x(t) = \delta (t+1) + \delta (t-1) $

$ X(\omega) = \int_{\infty}^{-\infty} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett