(→Example) |
(→Example) |
||
Line 17: | Line 17: | ||
<math>H(jw)=\frac{\frac{1}{2}}{jw+1} + \frac{\frac{1}{2}}{jw+3}</math> | <math>H(jw)=\frac{\frac{1}{2}}{jw+1} + \frac{\frac{1}{2}}{jw+3}</math> | ||
+ | |||
+ | <math>h(t)=\frac{1}{2}e^{-t}u(t)+\frac{1}{2}e^{-3t}u(t)</math> |
Revision as of 16:38, 24 October 2008
System Characterized By Linear Constant-Coefficient Differential Equations
$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $
=$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $
Example
Consider a LTI system that is chracterized by the differential equation
$ \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t) $
$ H(jw)=\frac{(jw)+2}{(jw)^2+4(jw)+3} $
$ H(jw)=\frac{jw+2}{(jw+1)(jw+3)} $
$ H(jw)=\frac{\frac{1}{2}}{jw+1} + \frac{\frac{1}{2}}{jw+3} $
$ h(t)=\frac{1}{2}e^{-t}u(t)+\frac{1}{2}e^{-3t}u(t) $