Line 3: Line 3:
  
 
=<math>Y(jw)=H(jw)X(jw)</math>=
 
=<math>Y(jw)=H(jw)X(jw)</math>=
 +
<math>H(jw)=/frac{Y(jw)}{X(jw)}</math>

Revision as of 16:28, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

$ Y(jw)=H(jw)X(jw) $

$ H(jw)=/frac{Y(jw)}{X(jw)} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch