(Y(jw)=H(jw)X(jw))
Line 1: Line 1:
 
 
== System Characterized By Linear Constant-Coefficient Differential Equations ==
 
== System Characterized By Linear Constant-Coefficient Differential Equations ==
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
  
<math>Y(jw)=H(jw)X(jw)</math>
+
=<math>Y(jw)=H(jw)X(jw)</math>=

Revision as of 16:27, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

$ Y(jw)=H(jw)X(jw) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin