(→Y(jw)=H(jw)X(jw)) |
|||
Line 1: | Line 1: | ||
− | |||
== System Characterized By Linear Constant-Coefficient Differential Equations == | == System Characterized By Linear Constant-Coefficient Differential Equations == | ||
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math> | <math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math> | ||
− | <math>Y(jw)=H(jw)X(jw)</math> | + | =<math>Y(jw)=H(jw)X(jw)</math>= |
Revision as of 16:27, 24 October 2008
System Characterized By Linear Constant-Coefficient Differential Equations
$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $