(System Characterized By Linear Constant-Coefficient Differential Equations)
(System Characterized By Linear Constant-Coefficient Differential Equations)
Line 1: Line 1:
  
 
== System Characterized By Linear Constant-Coefficient Differential Equations ==
 
== System Characterized By Linear Constant-Coefficient Differential Equations ==
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k}
+
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
  
 
+
=<math>Y(jw)=H(jw)X(jw)</math>=
 
+
Y(jw)=H(jw)X(jw)</math>
+

Revision as of 16:27, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

$ Y(jw)=H(jw)X(jw) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang