(New page: == EXAM 1== Problem 1. is <math> x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} </math> periodic?)
 
(EXAM 1)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Problem 1.
 
Problem 1.
  
is <math> x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} </math> periodic?
+
is  
 +
 
 +
<math> x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} </math>  
 +
 
 +
periodic?
 +
 
 +
We know that for a signal to be periodic
 +
 
 +
<math> x(t) = x(t + T) </math>
 +
 
 +
So we shift the function by a arbitrary number to try to prove the statement above
 +
 
 +
<math> x(t+1) =  \sum_{k = -\infty}^\infty \frac{1}{(t+1+2k)^{2}+1} </math>
 +
 
 +
 
 +
<math> x(t+4) =  \sum_{k = -\infty}^\infty \frac{1}{(t+2(\frac{1}{2}+k))^{2}+1} </math>
 +
 
 +
Then we  set <math> r = \frac{1}{2}+k </math> to yield,
 +
 
 +
<math> =  \sum_{k = -\infty}^\infty \frac{1}{(t+2r)^{2}+1} </math>
 +
 
 +
Since this signal is equivalent to x(t), then x(t) is periodic.

Latest revision as of 17:41, 15 October 2008

EXAM 1

Problem 1.

is

$ x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} $

periodic?

We know that for a signal to be periodic

$ x(t) = x(t + T) $

So we shift the function by a arbitrary number to try to prove the statement above

$ x(t+1) = \sum_{k = -\infty}^\infty \frac{1}{(t+1+2k)^{2}+1} $


$ x(t+4) = \sum_{k = -\infty}^\infty \frac{1}{(t+2(\frac{1}{2}+k))^{2}+1} $

Then we set $ r = \frac{1}{2}+k $ to yield,

$ = \sum_{k = -\infty}^\infty \frac{1}{(t+2r)^{2}+1} $

Since this signal is equivalent to x(t), then x(t) is periodic.

Alumni Liaison

EISL lab graduate

Mu Qiao