(→Problem 5) |
(→Problem 5) |
||
Line 20: | Line 20: | ||
<math>y[n] = \sum_{k=<N>}^{}a_kH(e^{j2\pi k/N})e^{jk(2\pi/N)n}\,</math> | <math>y[n] = \sum_{k=<N>}^{}a_kH(e^{j2\pi k/N})e^{jk(2\pi/N)n}\,</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>x[n] = cos(\pi n)\,</math> | ||
+ | <math>=\frac{e^{j\pi n}+e^{-j\pi n}}{2}\,</math> | ||
+ | |||
+ | <math>\,</math> |
Revision as of 16:51, 15 October 2008
Problem 5
An LTI system has unit impulse response h[n]=u[n]-u[n-2].
a)Compute the system's function H(z).
$ H(z) = \sum_{k=-\infty}^{\infty}h[k]z^{-k}\, $
$ = \sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k}\, $
$ = \sum_{k=0}^{1}z^{-k}\, $
$ = 1 + \frac{1}{z} $
b) Use your answer in a) to compute the system's response to the input x[n] = cos($ \pi $n).
$ x[n] = \sum_{k=<N>}^{}a_ke^{jk(2\pi/N)n}\, $
Then the response is
$ y[n] = \sum_{k=<N>}^{}a_kH(e^{j2\pi k/N})e^{jk(2\pi/N)n}\, $
$ x[n] = cos(\pi n)\, $ $ =\frac{e^{j\pi n}+e^{-j\pi n}}{2}\, $
$ \, $