(→solution) |
(→solution) |
||
Line 9: | Line 9: | ||
<math> y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k]</math> | <math> y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k]</math> | ||
− | + | n[-k] = 1 -k>=0 | |
+ | k<=0 | ||
<math> y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k]</math> | <math> y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k]</math> |
Revision as of 09:49, 15 October 2008
question
3. An LTI system has unit impulse response $ h[n]=u[-n] $ Compute the system's response to the input $ x[n]=2^{n}u[-n]. $(Simplify your answer until all \sum signs disappear.)
solution
$ y[n]=x[n]*h[n] $
$ y[n]=\sum^{\infty}_{k=-\infty}x[n]*h[n-k] $
$ y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k] $
n[-k] = 1 -k>=0 k<=0
$ y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k] $
$ \sum^{0}_{k=n}2^{k}, n<=0 $
0, else