(→solution) |
(→solution) |
||
Line 12: | Line 12: | ||
<math> y[n]=\sum^{0}_{k=-\infty}2^{k}*u[n-k]</math> | <math> y[n]=\sum^{0}_{k=-\infty}2^{k}*u[n-k]</math> | ||
+ | |||
+ | <math> \sum^{0}_{k=n}, n<=0</math> | ||
+ | |||
+ | <math> 0, else</math> |
Revision as of 09:48, 15 October 2008
question
3. An LTI system has unit impulse response $ h[n]=u[-n] $ Compute the system's response to the input $ x[n]=2^{n}u[-n]. $(Simplify your answer until all \sum signs disappear.)
solution
$ y[n]=x[n]*h[n] $
$ y[n]=\sum^{\infty}_{k=-\infty}x[n]*h[n-k] $
$ y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k] $
$ n[-k] = 1 -k>=0, k<=0 $
$ y[n]=\sum^{0}_{k=-\infty}2^{k}*u[n-k] $
$ \sum^{0}_{k=n}, n<=0 $
$ 0, else $