(New page: <math>\frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}{infty}|a_k|^2</math>)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<math>\frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}{infty}|a_k|^2</math>
+
<math>\frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}^{\infty}|a_k|^2</math> <font color=red>???</font>--[[User:Mboutin|Mboutin]] 10:12, 22 October 2008 (UTC)

Latest revision as of 05:12, 22 October 2008

$ \frac {1}{T} \int_{0}^{T}|x(t)|^2 dt = \sum_{k=-\infty}^{\infty}|a_k|^2 $ ???--Mboutin 10:12, 22 October 2008 (UTC)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett