(New page: ==Problem 5== We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply ...) |
|||
Line 1: | Line 1: | ||
− | + | [[Category: ECE]] | |
+ | [[Category: ECE 301]] | ||
+ | [[Category: Summer]] | ||
+ | [[Category: 2008]] | ||
+ | [[Category: asan]] | ||
+ | [[Category: Exams]] | ||
We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output. | We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output. | ||
Revision as of 09:15, 21 November 2008
We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.
$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(\tau)x(t-\tau)d\tau $
Plugging in the given x(t) and h(t) values results in:
$ \begin{align} y(t) & = \int_{-\infty}^\infty e^{-\tau}u(\tau)u(t-\tau-1)d\tau \\ & = \int_0^\infty e^{-\tau}u(t-\tau-1)d\tau \\ & = \int_0^{t-1} e^{-\tau}d\tau \\ & = 1-e^{-(t-1)}\, \mbox{ for } t > 1 \end{align} $
Since x(t) = 0 when t < 1:
$ y(t) = 0\, \mbox{ for } t < 1 $
$ \therefore y(t) = \begin{cases} 1-e^{-(t-1)}, & \mbox{if }t\mbox{ is} > 1 \\ 0, & \mbox{if }t\mbox{ is} < 1 \end{cases} $