(New page: ==Problem 5== We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply ...)
 
Line 1: Line 1:
==Problem 5==
+
[[Category: ECE]]
 +
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 +
[[Category: Exams]]
 
We are given the input to an LTI system along with the system's impulse response and told to find the output y(t).  Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.
 
We are given the input to an LTI system along with the system's impulse response and told to find the output y(t).  Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.
  

Revision as of 09:15, 21 November 2008

We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.

$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(\tau)x(t-\tau)d\tau $


Plugging in the given x(t) and h(t) values results in:

$ \begin{align} y(t) & = \int_{-\infty}^\infty e^{-\tau}u(\tau)u(t-\tau-1)d\tau \\ & = \int_0^\infty e^{-\tau}u(t-\tau-1)d\tau \\ & = \int_0^{t-1} e^{-\tau}d\tau \\ & = 1-e^{-(t-1)}\, \mbox{ for } t > 1 \end{align} $


Since x(t) = 0 when t < 1:

$ y(t) = 0\, \mbox{ for } t < 1 $


$ \therefore y(t) = \begin{cases} 1-e^{-(t-1)}, & \mbox{if }t\mbox{ is} > 1 \\ 0, & \mbox{if }t\mbox{ is} < 1 \end{cases} $

Alternative Solutions

Problem 5 - Alternate Solution

Problem 5 - Graphical Solution

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett