(New page: aaa)
 
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
aaa
+
<math>x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) \longrightarrow {\mathcal X}(\omega)= \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>

Latest revision as of 11:20, 14 November 2008

$ x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) \longrightarrow {\mathcal X}(\omega)= \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang