Line 1: | Line 1: | ||
− | <math>(2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>. . . . . . . . . . . . . . . . . . . . . . .''',''' | + | <math>(2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>. . . . . . . . . . . . . . . . . . . . . . .''',''' <math>a_{k}=\frac{1}{T}</math> for all k |
Revision as of 17:13, 14 October 2008
$ (2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\, $. . . . . . . . . . . . . . . . . . . . . . ., $ a_{k}=\frac{1}{T} $ for all k