(6 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
4. Compute the coefficients <math>a_{k} \!</math> of the Fourier series signal <math>x(t) \!</math> periodic with period <math>T = 4 \!</math> defined by
 
4. Compute the coefficients <math>a_{k} \!</math> of the Fourier series signal <math>x(t) \!</math> periodic with period <math>T = 4 \!</math> defined by
  
<center> <math>x(t)= \left\{ \begin{array}{ll}0&, -2<t<-1\\ 1&,  -1\leq t\leq 1\\ 0&,  1<t\leq 2\end{array}\right. </math> </center>
+
<center> <math>x(t)= \left\{ \begin{array}{ll}0,& -2<t<-1\\ 1,& -1\leq t\leq 1\\ 0,& 1<t\leq 2\end{array}\right. </math> </center>
  
  
Line 26: Line 26:
 
<math>    = \frac{1}{4} \int_{-1}^{1}e^{-jk\frac{\pi}{2}t}dt</math>
 
<math>    = \frac{1}{4} \int_{-1}^{1}e^{-jk\frac{\pi}{2}t}dt</math>
  
<math>    = \frac{1}{4} \frac{e^{-jk\frac{\pi}{2}t} {-jk\frac{\pi}{2}}|_{-1}^{1}</math>
+
<math>    = \frac{1}{4} \frac{e^{-jk\frac{\pi}{2}t}} {-jk\frac{\pi}{2}}|_{-1}^{1}</math>
 +
 
 +
<math>    = -\frac{1}{2jk\pi} (e^{-jk\frac{\pi}{2}} - e^{jk\frac{\pi}{2}})</math>
 +
 
 +
<math>    = \frac{sin(k\frac{\pi}{2})}{k\pi}</math>

Latest revision as of 15:19, 14 October 2008

Most Difficult Problem on First Test

The problem that I found most difficult was problem number 4.

4. Compute the coefficients $ a_{k} \! $ of the Fourier series signal $ x(t) \! $ periodic with period $ T = 4 \! $ defined by

$ x(t)= \left\{ \begin{array}{ll}0,& -2<t<-1\\ 1,& -1\leq t\leq 1\\ 0,& 1<t\leq 2\end{array}\right. $


Solution

We know that

$ a_{k} = \frac{1}{T} \int_{0}^{T}x(t)e^{-jk\omega _{o}t}dt $, and since T = 4,

$ a_{k}= \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{\pi}{2}t}dt $


By the definition of $ a_{0} \! $, we know that it is the average of the signal over the period. In this case,

$ a_{0} = \frac{1}{2} \! $

Now using the formula for $ a_{k} \! $ given above, we can find the remaining $ a_{k} \! $s.


$ a_{k}= \frac{1}{4} \int_{-2}^{2}x(t)e^{-jk\frac{\pi}{2}t}dt $

$ = \frac{1}{4} \int_{-1}^{1}e^{-jk\frac{\pi}{2}t}dt $

$ = \frac{1}{4} \frac{e^{-jk\frac{\pi}{2}t}} {-jk\frac{\pi}{2}}|_{-1}^{1} $

$ = -\frac{1}{2jk\pi} (e^{-jk\frac{\pi}{2}} - e^{jk\frac{\pi}{2}}) $

$ = \frac{sin(k\frac{\pi}{2})}{k\pi} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett