(New page: == Problem 3 == An LTI system has unit impulse response <math> h[n] = u[-n] </math>. Compute the system's response to the input <math> x[n] = 2^nu[-n] </math>. (simplify your answer until...)
 
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
  
 
An LTI system has unit impulse response <math> h[n] = u[-n] </math>. Compute the system's response to the input <math> x[n] = 2^nu[-n] </math>. (simplify your answer until all <math> \sum </math> signs disappear).
 
An LTI system has unit impulse response <math> h[n] = u[-n] </math>. Compute the system's response to the input <math> x[n] = 2^nu[-n] </math>. (simplify your answer until all <math> \sum </math> signs disappear).
 +
 +
== Solution ==
 +
 +
<math> y[n] = x[n]*h[n] \!</math>
 +
 +
<math> y[n] = \sum^{\infty}_{k = -\infty} x[k]  h[n-k] \!</math>
 +
 +
<math> y[n] = \sum^{\infty}_{k = -\infty} 2^ku[-k] u[-(n-k)] \!</math>
 +
 +
 +
We know <math> u[-k] = 1 \!</math> when <math> K \leq 0 </math><font color=red>, else <math>u[-k]=0</math>, therefore </font>
 +
 +
<math> y[n] = \sum^{0}_{k = -\infty} 2^k u[-n+k] \!</math>
 +
 +
<font color=red> Let </font> <math> r = -k \!</math><font color=red>, then </font>
 +
 +
<math> y[n] = \sum^{\infty}_{r = 0} (\frac{1}{2})^k u[-n-r] \!</math>
 +
 +
We know <math> -n-r \geq 0 </math> when  <math> -n \geq r </math>
 +
 +
<math> y[n] = \left\{ \begin{array}{ll} \sum^{-n}_{r = 0} (\frac{1}{2})^k \!  & \text{ when } -n \geq 0, \\
 +
0 & \text{ else. }
 +
\end{array}\right. </math>
 +
 +
So
 +
 +
<math> y[n] = \left\{ \begin{array}{ll} \frac{1- (\frac{1}{2})^{-n+1}}{1 - \frac{1}{2}} \! & \text{ when } -n \geq 0, \\
 +
0 & \text{ else. }
 +
\end{array}\right.
 +
</math>

Latest revision as of 06:52, 22 October 2008

Problem 3

An LTI system has unit impulse response $ h[n] = u[-n] $. Compute the system's response to the input $ x[n] = 2^nu[-n] $. (simplify your answer until all $ \sum $ signs disappear).

Solution

$ y[n] = x[n]*h[n] \! $

$ y[n] = \sum^{\infty}_{k = -\infty} x[k] h[n-k] \! $

$ y[n] = \sum^{\infty}_{k = -\infty} 2^ku[-k] u[-(n-k)] \! $


We know $ u[-k] = 1 \! $ when $ K \leq 0 $, else $ u[-k]=0 $, therefore

$ y[n] = \sum^{0}_{k = -\infty} 2^k u[-n+k] \! $

Let $ r = -k \! $, then

$ y[n] = \sum^{\infty}_{r = 0} (\frac{1}{2})^k u[-n-r] \! $

We know $ -n-r \geq 0 $ when $ -n \geq r $

$ y[n] = \left\{ \begin{array}{ll} \sum^{-n}_{r = 0} (\frac{1}{2})^k \! & \text{ when } -n \geq 0, \\ 0 & \text{ else. } \end{array}\right. $

So

$ y[n] = \left\{ \begin{array}{ll} \frac{1- (\frac{1}{2})^{-n+1}}{1 - \frac{1}{2}} \! & \text{ when } -n \geq 0, \\ 0 & \text{ else. } \end{array}\right. $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn