(2 intermediate revisions by the same user not shown)
Line 15: Line 15:
  
 
<math>=\sum_{k=-\infty}^{0}2^{k}u[-u+k]</math>
 
<math>=\sum_{k=-\infty}^{0}2^{k}u[-u+k]</math>
 +
 +
<math>  r = -k \!</math>
 +
 +
<math>=\sum_{r=0}^{\infty}(\frac{1}{2})^{r}u[-n-r]</math> 
 +
 +
<math>-n-r \geqq  0</math>
 +
 +
<math>-n\geqq r</math>
 +
 +
<math>=(\sum_{r=0}^{-n}(\frac{1}{2})^{n})</math>
 +
 +
if -n>= 0
 +
 +
else ,  0
 +
 +
therefore,
 +
 +
<math> =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math>
 +
 +
if n=<0
 +
 +
else,  0

Latest revision as of 10:06, 14 October 2008

Exam1 question 3.

An LTI system has unit impulse response $ h[n] = u[-n] $. compute the system's response to the input $ x[n]=2^nu[-n] $. (Simplify your answer until all $ \sum $ signs disappear.)


Solution

$ y[n] = x[n] * h[n]\! $

$ =\sum_{k=-\infty}^{\infty} x[k]h[n-k] $

$ =\sum_{k=-\infty}^{\infty} 2^{k}u[-k]u[-(n-k)] $

$ =\sum_{k=-\infty}^{0}2^{k}u[-u+k] $

$ r = -k \! $

$ =\sum_{r=0}^{\infty}(\frac{1}{2})^{r}u[-n-r] $

$ -n-r \geqq 0 $

$ -n\geqq r $

$ =(\sum_{r=0}^{-n}(\frac{1}{2})^{n}) $

if -n>= 0

else , 0

therefore,

$ =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $

if n=<0

else, 0

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin