Line 15: Line 15:
  
 
<math>=\sum_{k=-\infty}^{0}2^{k}u[-u+k]</math>
 
<math>=\sum_{k=-\infty}^{0}2^{k}u[-u+k]</math>
 +
 +
<math>  r = -k \!</math>
 +
 +
<math>=\sum_{r=0}^{\infty}(\frac{1}{2})^{r}u[-n-r]</math> 
 +
 +
<math>-n-r \geqq  0</math>
 +
 +
<math>-n\geqq r</math>
 +
 +
<math>=(\sum_{r=0}^{-n}(\frac{1}{2})^{n})</math>

Revision as of 09:52, 14 October 2008

Exam1 question 3.

An LTI system has unit impulse response $ h[n] = u[-n] $. compute the system's response to the input $ x[n]=2^nu[-n] $. (Simplify your answer until all $ \sum $ signs disappear.)


Solution

$ y[n] = x[n] * h[n]\! $

$ =\sum_{k=-\infty}^{\infty} x[k]h[n-k] $

$ =\sum_{k=-\infty}^{\infty} 2^{k}u[-k]u[-(n-k)] $

$ =\sum_{k=-\infty}^{0}2^{k}u[-u+k] $

$ r = -k \! $

$ =\sum_{r=0}^{\infty}(\frac{1}{2})^{r}u[-n-r] $

$ -n-r \geqq 0 $

$ -n\geqq r $

$ =(\sum_{r=0}^{-n}(\frac{1}{2})^{n}) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman