Line 10: | Line 10: | ||
x[n] = <math>2^{n}</math>u[-n] | x[n] = <math>2^{n}</math>u[-n] | ||
+ | |||
+ | y[n] = x[n] * h[n] | ||
+ | |||
+ | = <math> \sum^{\infty}{k = -\infty} 2^{k}u[-k]u[-n--k]</math> | ||
+ | |||
+ | since -k > 0 and k < 0 the summation parameters change | ||
+ | |||
+ | = <math> \sum^{0}{k = -\infty} 2^{k}u[-n+k]</math> |
Revision as of 09:48, 12 October 2008
Test Correction of # 3
An LTI system has unit impulse response $ h[n] = u[-n] $
Compute the system's response to the input $ x[n] = 2^{n}u[-n] $
(Simplify answer until all summation signs disappear.)
h[n] = u[-n]
x[n] = $ 2^{n} $u[-n]
y[n] = x[n] * h[n]
= $ \sum^{\infty}{k = -\infty} 2^{k}u[-k]u[-n--k] $
since -k > 0 and k < 0 the summation parameters change
= $ \sum^{0}{k = -\infty} 2^{k}u[-n+k] $