(One intermediate revision by one other user not shown)
Line 1: Line 1:
  <math>(1) \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} -> 2\pi\sum^{infty}_{k=-infty}a_{k}\delta(w-kw_{0})\,</math>
+
  <math>x(t)= \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \longrightarrow {\mathcal X}(\omega)= 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})\,</math>

Latest revision as of 11:20, 14 November 2008

$ x(t)= \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \longrightarrow {\mathcal X}(\omega)= 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn