(5 intermediate revisions by the same user not shown) | |||
Line 13: | Line 13: | ||
<math> = \sum^{-n}_{0} \frac{1}{2}^{k},</math> for n=<0 <br> | <math> = \sum^{-n}_{0} \frac{1}{2}^{k},</math> for n=<0 <br> | ||
− | <math> = 0 ,</math> | + | <math> = 0 ,</math>for n>0<br> |
− | <math> \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math><br> | + | <math> =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math>for n=<0 <br> |
− | <math> = 0 | + | <math> = 0, </math>for n>0<br> |
− | <math> | + | <math> =(2-2^{n})u[-n]</math><br> |
Latest revision as of 13:31, 10 October 2008
Question 3.
- An LTI system has unit impulse response h[n] =u[-n]. Compute the system's response to the input $ x[n] = 2^{n}u[-n]. $ Simplify your answer until all $ \sum $ signs disappear.)
Answer
$ y[n] = x[n] * h[n] , where * is convolution/, $
$ = \sum^{\infty}_{k=-\infty} 2^{k}u[-k]u[-n+k] $
$ = \sum^{0}_{k=-\infty} 2^{k}u[-n+k] $
$ = \sum^{0}_{k=n} 2^{k} $
$ = \sum^{-n}_{0} \frac{1}{2}^{k}, $ for n=<0
$ = 0 , $for n>0
$ =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $for n=<0
$ = 0, $for n>0
$ =(2-2^{n})u[-n] $