Line 12: Line 12:
 
<math> = \sum^{0}_{k=n} 2^{k}</math>
 
<math> = \sum^{0}_{k=n} 2^{k}</math>
  
<math> = \sum^{-n}_{0} \frac{1}{2}^{k}, for n<0</math><br>
+
<math> = \sum^{-n}_{0} \frac{1}{2}^{k},</math> for n<0<br>
<math> = 0                            , for n>0</math>
+
<math> = 0                            ,</math> for n>0
  
 
<math> \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math>
 
<math> \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math>

Revision as of 13:28, 10 October 2008

Question 3.

  • An LTI system has unit impulse response h[n] =u[-n]. Compute the system's response to the input $ x[n] = 2^{n}u[-n]. $ Simplify your answer until all $ \sum $ signs disappear.)


Answer

$ y[n] = x[n] * h[n] , where * is convolution/, $

$ = \sum^{\infty}_{k=-\infty} 2^{k}u[-k]u[-n+k] $

$ = \sum^{0}_{k=-\infty} 2^{k}u[-n+k] $

$ = \sum^{0}_{k=n} 2^{k} $

$ = \sum^{-n}_{0} \frac{1}{2}^{k}, $ for n<0
$ = 0 , $ for n>0

$ \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn