(New page: == Inverse Fourier Transform == <math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw </math> <m...) |
|||
Line 4: | Line 4: | ||
<math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> | <math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> | ||
− | <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \ | + | <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw </math> |
− | <math> x[n] = \int_{-\infty}^\infty \ | + | <math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math> |
Revision as of 18:01, 8 October 2008
Inverse Fourier Transform
$ \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw $
$ x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw $