(Inverse Fourier transform of X(w))
(Inverse Fourier transform of X(w))
Line 3: Line 3:
  
 
== Inverse Fourier transform of <math>X(w)</math>==
 
== Inverse Fourier transform of <math>X(w)</math>==
:<math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega
+
:<math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega
  
  

Revision as of 17:39, 8 October 2008

Specify a Fourier transform $ X(w) $

$ X(w)=\frac{1}{4+jw} $

Inverse Fourier transform of $ X(w) $

$ \begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega \end{align} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva